Subscribe

Filter

Explore by Category

    Explore by Tag

    Subtopic tags

      E-Commerce Site Search and Merchandising

      How Natural Language Processing Can Help Product Discovery

      By Tessa Roberts

      Nov 28, 2022

      18 min read

      E-Commerce Site Search and Merchandising

      How Natural Language Processing Can Help Product Discovery

      Human language in itself is difficult to master. So, it's no surprise that there can be a general disconnect between computers and humans. Since computers cannot communicate as organically as we do, we might even assume this separation between the two is larger than it actually is.

      While computers communicate with one another in code and long lines of ones and zeros, they’ve come to better understand human language with natural language processing (NLP) and machine learning (ML). With these natural language processing and machine learning methods, technology can more easily grasp human intent, even with colloquialisms, slang, or a lack of greater context. 

      With NLP, technology can conduct many tasks for us, from comprehending search terms to structuring unruly data into digestible bits — all without human intervention. Modern-day technology can automate these processes with natural language understanding, taking the task of contextualizing language solely off of human beings. Before diving further into those examples, let’s first examine what natural language processing is and why it’s vital to your commerce business.

      Relevant Search Results Page for Camping Tent

      What Is Natural Language Processing? 

      It’s not always easy to explain natural language processing, which can sometimes lead to confusion. But natural language processing is a branch of computer science — or more specifically a type of artificial intelligence — that allows computers to understand, interpret, and manipulate human language in the same ways humans can, whether it’s through text or spoken words. In engineering circles, this particular field of study is referred to as “computational linguistics,” where the techniques of computer science are applied to the analysis of human language and speech.

      Also called “text analytics,” NLP uses techniques, like named entity recognition, sentiment analysis, text summarization, aspect mining, and topic modeling, for text and speech recognition. Losing the technical jargon, NLP gives computers the power to understand human speech and text. It falls under the AI umbrella, along with machine learning (the ability of computers to think and act with less human intervention) and deep learning (a type of machine learning that can more easily analyze images, videos, and unstructured data). 

      If you sell products or services online, NLP has the power to match consumers’ intent with the products on your e-commerce website. This leads to big results for your business, such as increased revenue per visit (RPV), average order value (AOV), and conversions by providing relevant results to customers during their purchase journeys. 

      Artificial Intelligence Breakdown With ML, NLP, and Deep Learning

      Why Is Natural Language Processing Important?

      In a world of Google and other content search engines, internet users expect to enter a word or phrase — that might not even be fully formed — into a search box and be presented with a list of relevant search results. Shoppers have the same expectations. Because of these expectations, your search bar cannot be sustained by humans alone.

      Doing right by searchers, and ultimately your customers or buyers, requires machine learning algorithms that are constantly improving and developing insights into what customers mean and what they want. By using this powerful combination of machine learning and natural language processing, your brand can find an edge in a highly competitive and overly saturated market, scale your organization, and cut down on manual processes.

      E-Commerce Professionals Optimizing Product Search Results

      Here are some other reasons why you should consider investing in a smart product search solution with automated interpretation: 

      Product Search Without AI = Lost Customers

      Consumers can describe products in an almost infinite number of ways, but e-commerce companies aren’t always equipped to interpret human language through their search bars. This leads to a large gap between customer intent and relevant product discovery experiences, where prospects will abandon their search either completely or by hopping over to one of your competitors. 

      Believe it or not, the first 10 seconds of a page visit are extremely critical in a user’s decision to stay on your site or bounce. And poor product search capabilities and navigation are among the top reasons e-commerce sites could lose customers. To put it simply, a search bar with an inadequate natural language toolkit wastes a customer’s precious time in a busy world. Once search makes sense, however, it will result in increased revenue, customer lifetime value, and brand loyalty. 

      Help Is Needed To Sift Through Data…and More Data

      Any good, profitable company should continue to learn about customer needs, attitudes, preferences, and pain points. Unfortunately, the volume of this unstructured data increases every second, as more product and customer information is collected from product reviews, inventory, searches, and other sources.

      Graphic Visualizing the Connections That Need to Be Made Between Customer and Product Data

      An IDC study notes that unstructured data comprises up to 90% of all digital information. Worse still, this data does not fit into the predefined data models that machines understand. It all poses a large challenge for commerce brands and retailers. Like any double-edged sword, it also presents a huge opportunity. If retailers can make sense of all this data, your product search — and digital experience as a whole — stands to become smarter and more intuitive with language detection and beyond.

      What Are the Techniques Used in Natural Language Processing? 

      As we’ve discussed, natural language processing works to recognize, understand, summarize, and analyze what we type into the search bar or speak into a virtual assistant, in order to process language and provide actionable next steps. But this doesn’t happen without two main natural language processing techniques: syntax analysis and semantic analysis. 

      Syntax Analysis 

      Syntax analysis, or parsing, digs into the arrangement of words in the sentence and uses grammatical rules to derive meaning from the text or spoken words. This form of analysis has its own subset of techniques that it uses to uncover meaning, including the following: 

      • Stemming - Cuts words to their root form to understand them more easily 
      • Sentence breaking - Reduces larger pieces of text or speech into smaller fragments
      • Part-of-speech tagging - Classifies the part of speech for each word in a given phrase 

      Syntax Versus Semantic Analysis

      Semantic Analysis 

      Semantics extract the meaning behind the text. Using word categorization and meaning databases, semantics bring to light the intent behind certain words. Semantic analysis is the “secret sauce” of multiple prominent technologies, from search engines and chatbots to machine translation. The common techniques in semantic analysis are:

      • Word sense disambiguation - Comprehends the meaning of a word by using context
      • Named entity recognition - Identifies and categorizes words into subsets (e.g., products and attributes)
      • Natural language generation - Uses databases to better understand the semantics of the human language 

      3 Examples of Natural Language Processing in E-Commerce 

      Most of us have already come into contact with natural language processing in one way or another. Honestly, it’s not too difficult to think of an example of NLP in daily life. Whether you’ve used it to connect to virtual assistants (like Alexa or Siri), fill in the gaps of your text messages with autocomplete, or translate a webpage from one language to another, there’s no doubt that natural language processing makes life easier through its multitude of applications.

      It can even help commerce professionals with their online strategy. Here are a few ways that natural language processing can step in for your team and positively impact your key performance indicators. 

      Understanding User Intent With Semantic Search

      Incorporating semantic understanding into your search bar is key to making every search fruitful. Semantic understanding is so intuitive that human language can be easily comprehended and translated into actionable steps, moving shoppers smoothly through the purchase journey.

      Smartphone With Its Various Product Attributes

      But semantic search couldn’t work without semantic relevance or a search engine’s capacity to match a page of search results to a specific user query. Since it translates a user’s, and in the case of e-commerce, a customer’s intent, it allows businesses to provide a better experience through a text-based search bar, exponentially increasing RPV for your brand.

      As NLP works to decipher search queries, ML helps product search technology become smarter over time. Working together, the two subsets of AI comprehend how people communicate across languages and learn from keywords and keyword phrases for better business results. 

      Creating Recommendations and Pathways for Your Customers

      There’s a lot to be gained from facilitating customer purchases, and the practice can go beyond your search bar, too. For example, recommendations and pathways can be beneficial in your e-commerce strategy. 

      Product recommendations are powered by artificial intelligence — like machine learning and natural language processing algorithms — and allow your customers to explore more products, which can positively fuel engagement, ATC rates, and conversions while reducing cart abandonment rates. Amazon once claimed that 35% of its revenue comes from purchases that customers found through recommendations. Some examples of recommendation categories include “Frequently Bought Together,” “Frequently Viewed Together,” and “Similar Products.”

      On the other hand, pathways allow your merchandising team to target specific goals, such as brand promotions and product margins, and bring attention to your most important products. Like AI sustains recommendations, merchandiser insights are the magic behind pathways, creating the perfect combination of automated and manual workflows. Common pathway use cases include “New Arrivals,” “New Since Last Visit,” “On Sale,” and “Related Products.”

      Recommendations Versus Pathways

      Enhance Your Approach to Customer Service and Increase Brand Loyalty

      If a customer has a good experience with your brand, they will likely reconnect with your company at some point in time. With a smart search bar and an expansive suite of merchandising tools, you’ll be able to extract insights from customers’ searches, then gauge why they’re shopping with your business, what they’re looking for, and how they feel about your company. Of course, this is a lengthy process with many different touchpoints and would require a significant amount of manual labor. 

      But your company can use natural language processing to reveal patterns in speech and other areas to improve the overall shopping experience for your prospects. Once the search query is parsed, it will be enhanced with synonyms, which serves two purposes: eliminating null results and expanding the relevant ones that are returned. By eliminating zero search results, you’ll help the customer get one step closer to what they’re looking for — leading them in the right direction to make a final purchase. 

      Just like you, your customer doesn’t want to see a page of null or irrelevant search results. For instance, if your customers are making a repeated typo for the word “pajamas” and typing “pajama” instead, a smart search bar will recognize that “pajama” also means “pajamas,” even without the “s” at the end. Instead of showing a page of null results, customers will get the same set of search results for the keyword as when it's spelled correctly. 

      A Page of Relevant Search Results for Pajamas

      Imagine a world where you can hit your e-commerce goals by doing less work. At Bloomreach, we believe that the journey begins with improving product search to drive more revenue. Bloomreach Discovery’s intelligent AI — with its top-notch NLP and machine learning algorithms — can help you get there. See how with our Search Impact Validation.

      Search Impact Validation CTA

      Found this useful? Subscribe to our newsletter or share it.


      Tessa Roberts

      Content & Communications Manager

      Tessa is a content marketer specializing in digital marketing, content strategy, social media strategy.             

      Discover more content like this

      Ready to see Bloomreach in Action?

      Request Demo